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PHENOMENOLOGICAL MODEL OF FIRST-ORDER PHASE TRANSITIONS IN 

A DEFORMABLE ELASTIC MEDIUM 
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UDC 536.421 

We assume that the continuous medium under consideration can be described with the help 
of averaged quantities and that these quantities satisfy the laws of conservations of mass, 
momentum, and energy [i] 

09]or -;r- div (gv) = 0; (i) 

O/Ot(pv) 4- div (gv |  - -  P) = 9[; (2 )  

O~t(9(U + (l/2)[v[~)) + div (~(U + (l/2)[v12)v - -  • - - P  (v)) = p l . v  + 9g (3 )  

everywhere in the region ~ R  ~ occupied by the medium for all values of the time t in the 
interval (0, T) for any state of the continuous medium. Here 9 is the density; v the veloc- 
ity; P the symmetric stress tensor; U the specific internal energy; O the temperature; 
the thermal conductivity; f the external body force density; ~ the internal heat source 
density. Equations (I) through (3) have the form of the abstract conservation law 3A/~t + 
div (Av--~) = X, and when the functions A, v, and ~ have first-order discontinuities it is 

necessary to use the integral identity ~'JiJ (l(| + v)- ~)vdF = J~ XdG for an arbitrary volume 

G of the four-dimensional region ~T = ~ • (0, T) enclosed by a smooth surface F whose outward 
normal is v (| is a unit vector along the time axis). 
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It is evident that the system (I) through (3) is not closed. If the medium were in a 
single state, the system of equations could be closed by the equation of state and the axioms 
of thermodynamics. For example, an elastically deformed state of a continuous medium is com- 
pletely described by the Gibbs identity 

O d S  = d U  - -  ( i / p ) P ( I  - -  2E)-* : d E  (4)  

and the equation of state, where the free energy F = U--OS is defined to be a known iso- 
tropic function of the thermodynamic parameters E and O , where E = (i/2)(I - T-IT ~-l) is the 
Euler deformation tensor and T is the distortion tensor [i]. This construction, when applied 
to the system (I) through (3), determines the dependence P=P(E, O) (for example, the Du- 
hamel-Neuman law) and U= U(E, 0). 

In order to more clearly present the essence of the reasoning usedin the present paper, 
we limit ourselves for the time being to a single spatial variable. In this case the Gibbs 
identity can be written either in the form OdS =dU--pdV (V = i/p is the specific volume; 
p is the stress), or as 

d O  = - - S d O  - -  V d p  (5)  

(~= U--OS--pV is the thermodynamic Gibbs potential). If r is a known function of the 
independent parameters O and p, then S =--@O/aO~ V =--OO/@p. 

Suppose the system is found in two different states (phases I and II), and the depen- 
dence of the potential ~ on O and p is known in each phase. The phenomenological description 
of first-order phase transitions has been discussed in detail in [2] for a two-parameter me- 
dium, and following the system of axioms assumed there, one can determine regions correspond- 
ing to each phase in the plane of the independent thermodynamic variables O and p. According 
to the first postulate, at the points of contact of the different phases of the continuous 
medium, the stress and temperature of the medium are continuous. This means that in the(O, p)- 
plane the regions corresponding to the different phases share a cormnon boundary, which is 
called the phase equilibrium curve. The explicit form of the phase equilibrium curve is de- 
termined from the condition that the Gibbs thermodynamic potential be continuous at the points 
of phase equilibrium:~I(O, p) = OIl(O, p), and this is the content of the second postulate. 
The typical shape of the phase equilibrium curve is shown in Fig. la. Let the equation of 
this curve be O = O*(p) ; then the function O.(p) is usually called the melting temperature. 
The term "equilibrium thermodynamics" applied to the case considered here means that values 
of the parameters O and p lying above the phase equilibrium curve always correspond to phase 
I, and values of these parameters below this curve always correspond to phase II. Knowing 
the dependence of U and V on O and p in each phase (it is possible that these functions are 
not smooth when passing through the phase equilibrium curve), it is possible to formally 
close the system of equations (i) through (3). 

In actual fact, however, this construction does not completely close the system (i) 
through (3). We illustrate this fact on the simple example of a one-parameter medium, when 
motion of the medium is not taken into account. A model describingphase transitions in a 
medium where the only independent thermodynamic variable is the temperature is known as the 
Stefan problem. This problem is normally formulated not as a problem of finding the solu- 
tion of an integral identity corresponding to the law of conservation of energy (where the 
velocity is set equal to zero and the density is a known constant; such a solution is called 
a generalized solution), but as a consequence of this identity, when the structure of the 
solution is assumed to be known a priori. In particular, it is assumed that the solution 
has a strong discontinuity, where in the space defined by the physical variables (x, t) there 
exists a sufficiently smooth surface r (to be determined as part of the solution) dividing 
the region a T into two subregions, each of which is occupied by a single phase. If the de- 
pendence of U on O is linear everywhere except for the melting point O = O, (at this point 
the function U is not defined and has a first-order discontinuity) then it follows from the 
integral identity that the temperature satisfies the (possibly inhomogeneous) heat equation 
in each subregion of a T. The so-called Stefan condition on the surface r [i] also follows 
from this integral identity. The equations in each subregion, the Stefan condition, the 
condition of thermodynamic equilibrium O = O~ on the boundary F, the initial conditions, 
and the boundary conditions on the boundary of the region ~, together form the classical Ste- 
fan problem, and the corresponding solution is usually called classical, as well. It is 
obvious that any classical solution will also be a generalized solution, but the converse 
is not true in general. 
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As an example, we consider the cooling of an infinite cylindrical bar whose melting 
temperature is O. = 0. The bar is moved with a constant velocity v 0 from an insulated fur- 
nace occupying the half-space x < 0 and having the constant temperature 81 > 0, to a re- 
frigerator occupying the half-space x > 0 and having the temperature O~ = const < 0 [3, p. 
193]. We assume that the law of cooling O0/On=~(9--O ) (9=O1 for x < 0 and 9 = O~ for 
x > 0) is obeyed at the surface of the bar, that the temperature of the bar is constant in 
any section perpendicular to its axis, and that the coding process is stationary in a coordi- 
nate system fixed to the nonmoving furnace. Then the classical Stefan problem has the form 
(for notational simplicity all appropriate constants are set equal to unity) 

vodO/dx - -  d~O/dx 2 + 0 = ~, x :--/: xo, ( 6 )  

0 ( ~ )  = 0 ,  dO/dx(xo - -  O) - -  d O / d x ( ~  + 0 )  = ~ ,  lim [ O - - T I = O .  
I x 1 ~  

When O1 + O~ > 0 the solution O(x) and x 0 are written out explicitly. When ~ v. = ]02[- 
(i + IO21)-z/2 the solution has the structure assumed initially (Fig. 2a): O(x)> 0 for x < x 0, 
O(x)<0 for x > x 0. If, however, v 0 > v,, then the solution is singular (Fig. 2b): there 
exists a point x I such that the function O is strictly negative in the interval (xl, x0). 
Since the point x 0 is the phase boundary and the liquid phase is always to the left of this 
point, it would appear at first glance that the problem defined in (6) describes the com- 
plicated phenomenon of supercooling. But the mathematical model only describes that which 
is built into it by the physical axioms. And the Stefan problem is formulated from the axioms 
of equilibrium thermodynamics, in which the liquid phase always corresponds only to points of 
the continuous medium with temperatures higher than or equal to the melting temperature. 
Where then is the error? The error was introduced in the mathematical hypothesis about the 
structure of the solution in passing from the generalized formulation in terms of an inte- 
gral identity to the classical formulation (6). 

Before one can analyze the original integral identity, it is necessary to correctly 
determine its solution. For the cylindrical bar problem the integral identity has the form 

b 
( ou - as ian)  + S(o  - = o, ( 7 )  

where (a, b) is an arbitrary interval -~ < a < b < ~. The identity (7) contains the required 
functions U and O and is closed by the equation of state, in which U is a known smooth func- 
tion of the temperature O except at the point O = 0,, where it is not defined and has a first- 
order discontinuity. But how can U be found if the region occupied by the continuous medium 
has zero temperature? Recall that we assumed that any state of the continuous medium could be 
described in terms of averaged quantities. Two methods can be used. The first is purely 
mathematical [4] and assumes that in this state the energy U can have any value in the in- 
terval[U(O, --0),U(O, +0)] (U(O.__+0) are the limiting values of the internal energy to the 
left and right of the point of discontinuity e = 0,) ; the second method is purely physical 
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[5] and assumes that both phases coexist at each point in this state of the continuous medium 
and that all of the thermodynamic quantities depend continuously on a new parameter - the 
fraction of the liquid phase. In the framework of equilibrium thermodynamics, it turns out 
that these two methods are equivalent and formthe basis of the following physical axiom: 
there exist states of the continuous medium for which 0 is identically equal toO, , while U 
takes all values in the interval [U(O,--O), U(O.+O)]. 

It is natural to call such a state of the medium the transitional phase, differing from 
the liquid and solid phases. The inverse dependence of the temperature on internal energy 
can be found following the arguments discussed above: 8 depends smoothly on U everywhere 
outside the interval[U(O,--O), U(@,~-O)] (for example, linearly), is identically equal to O, 
inside this interval, and is continuous for all values of U. It is easy to distinguish the 
phases in terms of the function U, even when 0 = 8, : the liquid phase corresponds to U 
U(8,+O), the solid phase to U~ U(8,--O), and the transitional phase to U(8,--O)< U< 
U(8, +0). If now U is regarded as the solution of (7), then all quantities forming this 
identity will be determined correctly. A detailed analysis of the identity (7) shows that 
when v 0 > v~, its unique solution describes the liquid phase for x~.xl, the solid phase for 
x~x=, and the transitional phase for x I < x < x~ [3, p. 218]. 

Hence in order to solve the problem correctly it was necessary to expand the point 8 = 
8, (in the space of the independent variable 8) into a segment defining thetransitional 
state by introducing a new independent thermodynamic variable, the specific internal energy 
U. 

Returning to the original system of equations of motion of the continuous medium, we 
see in the case of a single spatial variable that the phase equilibrium curve in the plane of 
the thermodynamic variables 8 and p can be thought of as having a fold, which hides the tran- 
sitional state. This fold is smoothed out if we transform to new independent variables 8 
and V, or U and p. We assume that the phase equilibrium curve (see Fig. la) can be speci- 
fied in the form p = p,(8), and we consider the new independent variables 8 and V. In terms 
of these variables, phase I corresponds to the points of region H I , lying above curve 1 

o H II (V = VI(8)), phase H corresponds to the points of regi n , lying below curve 2 [u = 
V~I(8) ], and the transitional phase corresponds to the points of region H~ lying between 

I and V~I(8) be obtained by these curves (Fig. ib). Explicit forms of the curves V,(8) can 
substituting the value p = p,(~) in the equations of state V = /I(pl 8) and V = FiX{p, 8) in 
each of the pure phases. The possibility of such a description of the metastable transi- 
tional state was indicated in [2, p. 310], assuming the independent variables V and 8. 
Finally, the transitional state is actually unstable, if it occurs at all, but since one of 
the fundamental principles of the phenomenological theory of continuum mechanics is the as- 
sumption that any state of the continuous medium can be described in terms of averaged quan- 
tities, the complete description of the transitional phase is necessary in order to close the 
model of phase transitions considered here. 

Recall that the assumption of the existence of a transitional phase, allowing the fold 
running along the phase equilibrium curve in the (8, p)-plane to be straightened, was the 
first of the newly added postulates of the model. The second postulate, which should not 
cause any objection since it is a consequence of the law of conservation of energy, is the 
assumption that the Gibbs identity (5) is also valid in the transitional phase. The third 
postulate assumes that the thermodynamic potential ~ is continuous everywhere in the region 

of the variables 8 and V. 

It turns out that the second and third postulates completely determine r U, S, p, and F 
as functions of the independent parameters 8 and V everywhere in the region N,. A given 
point M on the phase equilibrium curve p = p,(8) corresponds to the segment I(8) = {(8, V)~ 
H.]8 = eonst) in the region ~, of the variables 8 and V, and p = p.(8) = const and ~ = const 
along this segment. The latter assertion follows from the Gibbs identity (5) in H,. The 
condition that the function r is continuous everywhere in H uniquely determines its constant 
value on the segments I(8). The free energy density F = ~ + pY is continuous everywhere in 

since it is a combination of continuous functions. Let Fl(V~(8), O) and F,(/~(8), 8) be the 
limiting values of the function F(V, 8) on the curve V = V~(8) from the regions ~I and H,, 
respectively. Then differentiating the equation FI(V~(8), 8) = F.(V~(8), 8) and using the 
relations S =--@F/O8, p = OF/HV, we obtain the result that the entropy S is also continuous 
through the line V = V~(8). The line V = V~(8) is considered in the same way. The continuity 
of U everywhere follows from the relation U = ~+8S +pV. 
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Therefore if the free energy density F is known in regions H I and H II, then it is known 
everywhere in region H and it is continuous there along with its derivatives 0F/~O =--S 
and 8F/SV = p. 

The thermal conductivity ~ appears in the law of conservation of energy (3) and can be 
found in each phase (I or II). That is, it can be considered a given function of the vari- 
ables O and p, possibly having a first-order discontinuity through the phase equilibrium 
curve p=p,(O). It would be difficult to produce an argument which would determine the 
thermal conductivity in region ~, of the new variables ~ and V, therefore we assume that 
is a continuous function of the parameters O and V everywhere in region n, and assume that 
it is a linear function of V on the segments I(O) in H,. This is the postulate used in [5] 
in determining the characteristics of the two-phase region of Borisov. This last assumption 
is the fourth of the newly introduced postulates and completely closes the model of phase 
transitions in a deformable elastic medium for the case of a single spatial variable. The 
initial postulates of the model are consistent with the experimental relation between pres- 
sure and deformation for all deformations for first-order phase transitions in metals [6, 
p. 540]. 

The principles used in constructing a mathematical model of first-order phase transi- 
tions with a single spatial variable carry over completely to problems involving a large 
number of dimensions. It is true that in general the number of independent thermodynamic 
parameters of a deformable elastic medium is greater than two, and additional axioms (besides 
those already introduced) are therefore necessary to close the model. We consider only small 
deformations of the medium, a linear dependence of the stress tensor on the deformation ten- 
sor, and a linearized form of the Gibbs identity: 

OdS = d U - - P  :dE. (8) 
In terms of the free density F = U--OS the identity (8) becomes 

d F =  - - S d O + P : d E ,  (9) 

This identity, plus the assumption that F is an isotropic funtion of the deformation tensor 
E, and the assumption of a linear relation between the stress tensor and the deformation 
tensor implies that in each phase the equation of state f = F(O, el, ~) (3ei = tr E,(9/2)~ = 3E: 
E - (trE)2) and the identity (9) completely determine the thermodynamic state of the medium 
as a function of the three independent parameters O , el, e 2. Therefore each phase is a 
three-parameter medium, and hence the transitional phase between the two observable phases 
can also be considered as a three-parameter medium. 

We choose the temperature O and the invariants al = (I/3)tr P, a s = (i/]/~V3P:P--(tr--~) 2 
of the stress tensor as the independent parameters of the thermodynamic state of the medium. 
If we assume that O and oi, o2 are continuous at points of the continuous medium in which the 
different phases are in contact, then in the space of the independent thermodynamic para- 
meters (O, ~, as) the phase equilibrium surface dividing regions corresponding to the differ- 
ent phases is an equilibrium state the explicit form of the phase equilibrium surface can be 
obtained if we require that the function ~= U--OS--P :E be continuous at the points of 
the contact of the phases: 

@I( O' ~I, aS)= ~I* (0, al, O2). 

We assume that the phase equilibrium surface F is specified by the equation (Fig. 3a) 

~s = ~(~i, O). ( i 0) 

According to the principles discussed earlier, the introduction of the new independent 
thermodynamic parameters O, el, and e 2 allows one to unfold the phase equilibrium surface F 
into a transitional state region N, separating the regions H I and H II corresponding to phases 
I and II (Fig. 3b). The postulate on the validity of the Gibbs identity 

d~ = - - S d O - - 3 e f l a l - - e f l ~  s (II) 

in terms of the thermodynamic potential ~ and the invariants of the stress and deformation 
tensors, or the same identity, but written for the free energy density 

dF = - - S d O + 3 a l d e , + a , c l e 2 ,  

along with the postulates that the potential ~ and the pressure 01 are continuous everywhere 
in region H of the thermodynamic parameters O, el, and e2, completely determines the depen- 
dent thermodynamic variables ~, F, U, S, oi, a 2 in the transitional phase. 
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We consider sections of the set N, formed by the planes {0 = const} in the form 

Qo = {(el, e~, O) ~ H ,  ~ 0 = const}. 

I t  i s  known [7] t h a t  for  n e a r l y  a l l  values  of a, the se t  of s u r f a c e s { O , ~  1, e2, O) = a} cons t i  ~ 
tutes a finite number of smooth straightened curves which are either closed, or whose end- 
points pass out on the boundary of the set Io dividing the sets 

{O(e,, e2, O) > a}, {O(el, e2, O ) <  a} 
and are such that 

(O0,/Oel)  2 + (O0,/Oe2) 2 > 0 

[(0.~1, e2, O) is  the  value of r in region ~ and is  assumed to be the  minimum of a t w i c e - d i f -  
ferentiable function]. We show that all connected elements of the set of surfaces are in 
fact line segments joining the rim of the section Qe. These properties of the surface lines 
mean that we can introduce the curvilinear coordinates (~, n) in a small neighborhood of each 
connection of the elements of the set of surfaces, where ~ = O.(el, e2, 0). Returning to the 
identity (ii) and Eq. (i0), we see that o I = sl(~) in each of these neighborhoods. It then 
follows that we have the relation I = d~,/d~ =--[3e I + e~0~(~l(a), O)/O~ I] (~i(~/d%)on the lines 
of the surfaces {~, = a}. Hence the linear combination of the variables e I and e 2 is con- 
stant along each connection of the lines. 

Let M be a point on the phase equilibrium surface F in the space of the variables (o I , 
~, O),and let IM be a line segment in H,, where the mapping (~i, a~, O)-+(e I, e 2, O) maps M into 
I M. Then ~,(e I, e~, @) = ~I(M) = On(/~),(el, e2, O)~I~. The free energy density F is uniquely 
determined in terms of the potential ~, and F is also a continuous function of the indepen- 
dent thermodynamic variables (e1~ e~, O } everywhere in region H. In addition, the derivatives 
of F with respect to el, e2, and O are also continuous in H since the derivatives ~F/be I = 
3o I and 3F/~e 2 = o2 are continuous by construction, and the continuity of the derivative 
OF/O0 = --S can be proven by analogy with the one-dimensional case. The postulates that the 
thermal conductivity ~ is continuous everywhere in region H and that ~ depends linearly on 
e~ in region H~ along the line segments for which ~, = const close the model. 

Returning to the model as a whole, we note that the continuity of O, oI, and ~ at the 
points of contact of the phase cannot cause any objection, but the postulate that o 2 is 
continuous is not supported by any additional theoretical reasoning of experimental facts. 
The authors are unaware of a theoretical or experimental paper where equilibrium phase tran- 
sitions in a three-parameter deformable elastic medium have been analyzed, especially by the 
construction of a phase equilibrium surface in the space of the independent thermodynamic 
variables. However, starting from the Gibbs identity (ii), and carrying through the analogy 
with a multicomponent medium [2], where the chemical potentials of the components of the 
mixture and the temperature appear as differentials in the Gibbs identity and are continuous 
upon changes in the aggregate state of the medium, it is natural to require that all thermo- 
dynamic variables appearing as differentials in (ii) be continuous at phase equilibrium 
points, including the invariant s~. Since the variation of the deformation is plastic in 
the transitional region on the lines of the surfaces of the potential ~, an indirect support 
of the correctness of the model is the existence of a plastic region between the two pure 
phases in solid-phase transformations [8]. 

Remark I. A model of phase transitions in an ideal two-parameter medium with a spheri- 
cal stress tensor can be constructed in analogy with the case of a single spatial variable. 
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Remark 2. The initial and boundary conditions are dictated by the structure of the dif- 
ferential equations, and the formulation of initial and boundary-value problems is the sub- 
ject of a separate publication. 
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UNSTEADY THREE-DIMENSIONAL LAMINAR BOUNDARY LAYER ON BLUNT BODIES 

WITH STRONG BLOWING 

S. V. Peigin and B. Y. Filonenko UDC 532.526 

One must investigate unsteady heat and mass transfer in flow of a compressible gas over 
blunt bodies with a permeable surface in order to solve many applied problems. In particular, 
these problems arise unavoidably and in general are time-dependent when gas is blown through 
a porous or perforated surface in order to form a gas curtain. Similar questions arise also 
in examining a number of chemical technology facilities in various regimes of operation. 

For these reasons the literature has a number of papers in which both approximate ana- 
�9 lytical methods [i, 2] and numerical methods [3-5] have been used to study unsteady processes 
occurring in laminar planar or axisyn~metric boundary layers in a compressible gas on a perme- 
able surface. The influence of blowing (or suction) on the characteristics of the unsteady 
two-dimensional boundary layer was examined in [6, 7]. Unsteady heat transfer in the vicinity 
of a stagnation point with two radii of curvature was the subject of [8, 9], and the in- 
fluence of strong blowing on the basic characteristics of steady flow in a three-dimensional 
laminar boundary layer was examined in [10-13]. 

This paper has obtained numerical and asymptotic solutions, over a wide range of vari- 
ation of the governing parameters, of the equations of the unsteady three-dimensional laminar 
boundary layer on a permeable surface, including the case of strong blowing. 

i. Statement of the Problem. We consider three-dimensional unsteady flow of a super- 
sonic gas over blunt bodies with a permeable surface at large incident stream Reynolds number 
Re. We choose a nondegenerate curvilinear coordinate system (x I, x 2, x 3) with origin at the 
stagnation point, and normally related to the wetted surface: x 3 = const is a family of sur- 
faces parallel to the body surface (x ~ = 0), and x I and x 2 are curvilinear coordinates on 
the surface. 

Later we shall also investigate bodies for which the longitudinal pressure gradient Vp* 
obtained by solving the equations describing inviscid flow over a given body is a quantity 
of order O(p~V~/L). As is shown by asymptotic analysis of the unsteady three-dimensional 
Navier-Stokes equations for the case of hypersonic flow over bodies with blowing present and 
under the conditions 
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